Probability in High Dimensions

Solutions to Exercises, Week 7

September 5, 2020

3.2 The martingale method
Problem 3.6.
Problem 3.7.

Problem 3.8. (Empirical Frequencies)

Solution. We use the following notations :

#ike{l,2,..,n} : X €C}
n

p(C)|

f(X)=Zn(X)=sgp\

#{ke{1,2,...,n}: X €C}
n

Yu(C, X) = | u(@)|

For any C, X and X’ (such that X’ is different from X only on the ith component), we have :

Yn(caX) - Zn(X/) § Yn(caX) - Yn(ca X/)
1

IN

and by taking the supremum over C, we have:

1
Zn(X) = Zn(X') < =
n
which gives us :
1
Di(f) < —
(<
We conclude using McDiarmid’s inequality.
Problem 3.9 (Sums in Hilbert space). Let X, ..., X,, be independent random variables with zero mean in a Hilbert

space, and suppose that || Xi|| < C a.s. for every k.
a.
b.
c. Conclude that for all t > 2Cn~1/? (note the 2 in the bound which differs from van Handel’s notes),
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d. Finally, argue that for all t > 0,

P
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Z t‘| S 26—7Lt2/802.

Solution. a.
b.

c. For any t > \2/—%,

P >t| =P >E +1,

1 < 1 < 1 <
HnZXk |nZXk gZXk
k=1 k=1 k=1

wheref =t — E H% > orey Xk“ Note that £ > 0 since ¢ > \2/—% Thus, from part (a),
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Now, let us consider the difference 4¢% — ¢2:

> t] < e—nfz/QCZ_

)l

Since t > \2/—% >2E H% ZZ=1 XkH, we have that 4¢2 — 2 > 0, i.e. 4#2 > ¢2. Note that this does NOT hold

true if ¢ is only bounded below by % (implying a likely typo in van Handel’s notes). Therefore,
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k=1
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482 — 2 = (2t —t)(2t + 1) = <t2E
k=1

n
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> t‘| < 6—71/{2/202 < e—ntz/SC2

d. For the right-hand side to be non-trivial, ¢ > 0 must satisfy

26—nt2/8(]2 S 1’

which we can rewrite as o0 o0

t>+/2log2— > —
since y/2log2 > 1. However, the bound holds for all ¢t > \2/—% by part (¢). Thus, the bound is satisfied for all
t>0.

Problem 3.10. An Erdios-Rényi random graph G(n,p) is a graph on n vertices such that for every pair of vertices
v,v’ there is an edge between them with probability p, independently of the other edges. A coloring of the graph is
the assignment of a color to each vertex such that every pair of vertices connected by an edge have a distinct color.
The chromatic number Y is the minimal number of colors needed to color the graph. Show that

P[|x—Ex|>t/n] <27

It can be shown that the chromatic number satisfies Ex ~ n/2log,n as n — oo, where b =1/(1 — p). We therefore
see that the fluctuations of the chromatic number are of much smaller ordr than its magnitude.



Solution. Describe a graph of n vertices by the set of edges (,7), ¢ < j, as
G(X1,...,X,) = X,
k=1

where X, C {(4,7) € [k — 1] x {k}} is the set of edges connecting vertex k to vertices with index less than k. Note
this description only uses n variables, and for the ER random graph these variables are independent.
Apply McDiarmid’s theorem with f(Xi,...,X,) as the chromatic number of the graph G(Xjy,...,X,):

Dy f(w1:0) = sup f@r—1, 2, @pp12) = 0F f(@rr-1, 2, Thga:z).
First notice that
sup f(@1m—1, 2, 2p11:2) < flz) +1
irzlff(irl:kflaz»xk+1:z) > f(z) -1,

since in the first case, the worst case scenario is that you connect the k-th vertex to another vertex of the same
colour, so in this case you can just give the k-th vertex a completely new, unused colour and be done with it. In the
second case, at best you by removing an edge you can now give the k-th vertex the same colour as another vertex
in the graph, thereby saving at best one colour.

But suppose first that

sup f (@161, 2, Tht1:2) = fx) + 1
z

this means that the k-th vertex currently shares its colour with another vertex that it is not connected to, since by
adding the edge we have to give the k-th vertex(or the one connected to it) a new colour. But then if this is the
case, even since the colour of the k-th vertex is already used by another vertex, by changing the colour of the k-th
vertex we can’t improve the chromatic number and thus

inf f (2161, 2, Tppr:2) = (@)
Similarly if
ilzlff(xl;kfl,z,l‘k+1:z) = f(z) - 1;
we conclude that the k-th vertex has a unique colour and thus
Sl;p J(@1k—1,2,Tpq1:2) = f(2).
Overall
Dy f(x1:0) = Sup f@rg—1, 2, 2pp02) —0f f(Zre-1, 2, 2pp02) | < 1

This quantity is 0 or 1 as changing the set of edges to vertex k can at most require that vertex k take on a new
colour.
Plugging in, we get

Pf(X1,.. ., Xn) —Ef(X1,..., X,) > t] < e 2/ Ziaa DI

042
:eZt/n



which implies
Plf(X1,...,Xn) —Ef(X1,...,X,)| > 1] < 2e2°/m,

which is better than the problem statement which claims 2e~t’/m,

Problem 3.11. (A Generalization of Azuma-Hoeffding) Given filtration {Fy }r<n with Ay satisfying E[Ag|Fr—1] =
0 and A < A, < By, show that

P lz A >t and Z(Bk - Ak)2 < 02] < e~ 2t/ (1)
k=1 k=1

Solution. We start with an assumption which we will prove at the end:

<1 (2)

exp{)\ZAk—Z Bk—Ak)Q}
k=1

Start by applying Markov inequality with f(z) = e’ giving

(ZAki AkBk)22t>6/\t§E
k=1

Focusing on the left probability, recall that for any events A, B we have P(A) > P(AN B). This means

exp {)\ZAk — %QZ(Bk — Ak)2}

k=1 k=1

({ZAk—i Ak—Bk)Q Zt}ﬁ{zn:(Ak—Bk)z §62}> <P<2Ak—i Ak—Bk) > > (4)

k=1

Additionally observe that we have inequality

(ffa ool wrs):

<{2Ak—z Ak—Bk)2Zt}ﬂ{zn:(Ak—Bk)Qgcz}>. (6)
k=1

k=1

Going back to the expectation we get

({ZA’f—>t} {i(Ak_Bk)2§62}> <e M (7)

now optimising with %02 =t = \=%



Finally let 2t = s to get the result.
Now for each k = 1,...,n we have from Hoeffdings Lemma 3.6 E[e**|F;,_1] < X (Be=41)"/8 therefore

_ . 12
E eXp{)‘ZA’C_SZ(Bk—Ak)Q} =
L k=1 k=1
- n Az n N )
E exp{)\ZAkSZ(BkAk)2}E[e>\Ak*S(BlAk) |]_—1H <
L k=2 =2
FE |exp )\zn:Ak— Ei(Bk_Ak)2 <1
L k=2 8 k=2 -

where we have iteratively taken the expectation in.
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