
Probability in High Dimensions

Solutions to Exercises, Week 7

September 5, 2020

3.2 The martingale method
Problem 3.6.

Problem 3.7.

Problem 3.8. (Empirical Frequencies)

Solution. We use the following notations :

f(X) = Zn(X) = sup
C
|#{k ∈ {1, 2, ..., n} : Xk ∈ C}

n
− µ(C)|

Yn(C,X) = |#{k ∈ {1, 2, ..., n} : Xk ∈ C}
n

− µ(C)|

For any C, X and X’ (such that X’ is different from X only on the ith component), we have :

Yn(C,X)− Zn(X ′) ≤ Yn(C,X)− Yn(C,X ′)

≤ 1

n

and by taking the supremum over C, we have:

Zn(X)− Zn(X ′) ≤ 1

n

which gives us :

Di(f) ≤ 1

n

We conclude using McDiarmid’s inequality.

Problem 3.9 (Sums in Hilbert space). Let X1, . . . , Xn be independent random variables with zero mean in a Hilbert
space, and suppose that ‖Xk‖ ≤ C a.s. for every k.

a.

b.

c. Conclude that for all t ≥ 2Cn−1/2 (note the 2 in the bound which differs from van Handel’s notes),

P

[∥∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥∥ ≥ t
]
≤ e−nt

2/8C2

.
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d. Finally, argue that for all t ≥ 0,

P

[∥∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥∥ ≥ t
]
≤ 2e−nt

2/8C2

.

Solution. a.

b.

c. For any t ≥ 2C√
n
,

P

[∥∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥∥ ≥ t
]

= P

[∥∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥∥ ≥ E

∥∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥∥+ t̃

]
,

where t̃ = t−E
∥∥ 1
n

∑n
k=1Xk

∥∥. Note that t̃ ≥ 0 since t ≥ 2C√
n
. Thus, from part (a),

P

[∥∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥∥ ≥ t
]
≤ e−nt̃

2/2C2

.

Now, let us consider the difference 4t̃2 − t2:

4t̃2 − t2 = (2t̃− t)(2t̃+ t) =

(
t− 2E

∥∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥∥
)(

3t− 2E

∥∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥∥
)
.

Since t ≥ 2C√
n
≥ 2E

∥∥ 1
n

∑n
k=1Xk

∥∥, we have that 4t̃2 − t2 ≥ 0, i.e. 4t̃2 ≥ t2. Note that this does NOT hold
true if t is only bounded below by C√

n
(implying a likely typo in van Handel’s notes). Therefore,

P

[∥∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥∥ ≥ t
]
≤ e−nt̃

2/2C2

≤ e−nt
2/8C2

.

d. For the right-hand side to be non-trivial, t ≥ 0 must satisfy

2e−nt
2/8C2

≤ 1,

which we can rewrite as
t ≥

√
2 log 2

2C√
n
>

2C√
n
,

since
√

2 log 2 > 1. However, the bound holds for all t ≥ 2C√
n
by part (c). Thus, the bound is satisfied for all

t ≥ 0.

Problem 3.10. An Erdös-Rényi random graph G(n, p) is a graph on n vertices such that for every pair of vertices
v, v′ there is an edge between them with probability p, independently of the other edges. A coloring of the graph is
the assignment of a color to each vertex such that every pair of vertices connected by an edge have a distinct color.
The chromatic number χ is the minimal number of colors needed to color the graph. Show that

P
[
|χ−Eχ| ≥ t

√
n
]
≤ 2e−t

2

.

It can be shown that the chromatic number satisfies Eχ ∼ n/2 logb n as n→∞, where b = 1/(1− p). We therefore
see that the fluctuations of the chromatic number are of much smaller ordr than its magnitude.
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Solution. Describe a graph of n vertices by the set of edges (i, j), i < j, as

G(X1, . . . , Xn) =

n⋃
k=1

Xn,

where Xk ⊆ {(i, j) ∈ [k − 1]× {k}} is the set of edges connecting vertex k to vertices with index less than k. Note
this description only uses n variables, and for the ER random graph these variables are independent.

Apply McDiarmid’s theorem with f(X1, . . . , Xn) as the chromatic number of the graph G(X1, . . . , Xn):

Dkf(x1:n) = sup
z
f(x1:k−1, z, xk+1:z)− inf

z
f(x1:k−1, z, xk+1:z).

First notice that

sup
z
f(x1:k−1, z, xk+1:z) ≤ f(x) + 1

inf
z
f(x1:k−1, z, xk+1:z) ≥ f(x)− 1,

since in the first case, the worst case scenario is that you connect the k-th vertex to another vertex of the same
colour, so in this case you can just give the k-th vertex a completely new, unused colour and be done with it. In the
second case, at best you by removing an edge you can now give the k-th vertex the same colour as another vertex
in the graph, thereby saving at best one colour.

But suppose first that

sup
z
f(x1:k−1, z, xk+1:z) = f(x) + 1;

this means that the k-th vertex currently shares its colour with another vertex that it is not connected to, since by
adding the edge we have to give the k-th vertex(or the one connected to it) a new colour. But then if this is the
case, even since the colour of the k-th vertex is already used by another vertex, by changing the colour of the k-th
vertex we can’t improve the chromatic number and thus

inf
z
f(x1:k−1, z, xk+1:z) = f(x).

Similarly if

inf
z
f(x1:k−1, z, xk+1:z) = f(x)− 1;

we conclude that the k-th vertex has a unique colour and thus

sup
z
f(x1:k−1, z, xk+1:z) = f(x).

Overall ∣∣∣∣Dkf(x1:n) = sup
z
f(x1:k−1, z, xk+1:z)− inf

z
f(x1:k−1, z, xk+1:z)

∣∣∣∣ ≤ 1.

This quantity is 0 or 1 as changing the set of edges to vertex k can at most require that vertex k take on a new
colour.

Plugging in, we get

P [f(X1, . . . , Xn)−E f(X1, . . . , Xn) ≥ t] ≤ e−2t2/
∑n
k=1 ‖Dkf‖

2
∞

= e−2t2/n
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which implies

P [|f(X1, . . . , Xn)−E f(X1, . . . , Xn)| ≥ t] ≤ 2e−2t2/n,

which is better than the problem statement which claims 2e−t
2/n.

Problem 3.11. (A Generalization of Azuma-Hoeffding) Given filtration {Fk}k≤n with ∆k satisfying E[∆k|Fk−1] =
0 and Ak ≤ ∆k ≤ Bk show that

P

[
n∑
k=1

∆k ≥ t and
n∑
k=1

(Bk −Ak)2 ≤ c2
]
≤ e−2t2/c2 (1)

Solution. We start with an assumption which we will prove at the end:

E

[
exp

{
λ

n∑
k=1

∆k −
λ2

8

n∑
k=1

(Bk −Ak)2

}]
≤ 1. (2)

Start by applying Markov inequality with f(x) = eλx giving

P

(
n∑
k=1

∆k −
λ

8

n∑
k=1

(Ak −Bk)2 ≥ t

)
eλt ≤ E

[
exp

{
λ

n∑
k=1

∆k −
λ2

8

n∑
k=1

(Bk −Ak)2

}]
. (3)

Focusing on the left probability, recall that for any events A,B we have P(A) ≥ P(A ∩B). This means

P

({
n∑
k=1

∆k −
λ

8

n∑
k=1

(Ak −Bk)2 ≥ t

}
∩

{
n∑
k=1

(Ak −Bk)2 ≤ c2
})
≤ P

(
n∑
k=1

∆k −
λ

8

n∑
k=1

(Ak −Bk)2 ≥ t

)
. (4)

Additionally observe that we have inequality

P

({
n∑
k=1

∆k −
λc2

8
≥ t

}
∩

{
n∑
k=1

(Ak −Bk)2 ≤ c2
})
≤ (5)

P

({
n∑
k=1

∆k −
λ

8

n∑
k=1

(Ak −Bk)2 ≥ t

}
∩

{
n∑
k=1

(Ak −Bk)2 ≤ c2
})

. (6)

Going back to the expectation we get

P

({
n∑
k=1

∆k −
λc2

8
≥ t

}
∩

{
n∑
k=1

(Ak −Bk)2 ≤ c2
})
≤ e−λt (7)

now optimising with λc2

8 = t =⇒ λ = 8t
c2

P

({
n∑
k=1

∆k ≥ 2t

}
∩

{
n∑
k=1

(Ak −Bk)2 ≤ c2
})
≤ e−8t2/c2 . (8)
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Finally let 2t = s to get the result.
Now for each k = 1, . . . , n we have from Hoeffdings Lemma 3.6 E[eλ∆k |Fk−1] ≤ eλ2(Bk−Ak)2/8 therefore

E

[
exp

{
λ

n∑
k=1

∆k −
λ2

8

n∑
k=1

(Bk −Ak)2

}]
= (9)

E

[
exp

{
λ

n∑
k=2

∆k −
λ2

8

n∑
k=2

(Bk −Ak)2

}
E
[
eλ∆k−λ

2

8 (B1−Ak)2 |F1

]]
≤ (10)

E

[
exp

{
λ

n∑
k=2

∆k −
λ2

8

n∑
k=2

(Bk −Ak)2

}]
≤ 1 (11)

where we have iteratively taken the expectation in.
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