Probability in High Dimensions

Solutions to Exercises, Week 6

August 30, 2020

3.1 Subgaussian variables and Chernoff bounds

Problem 3.1 (Subgaussian variables). There are several different notions of random variables with a Gaussian
tail that are all essentially equivalent up to constants. The aim of this problem is to obtain some insight into
these notions.

a. As a warmup exercise, show that if X is o?-subgaussian, then Var X < o2.

b. Show that for any increasing and differentiable function ®

Ba(X]) = #(0) + [ /(0 PX| > a
c. In the following ]:ive !)arts, assume for simplicity that EX = 0. Show that if X is o?-subgaussian, then
P[|X|>t] <2e t/27",
d. Show that if P[|X| > t] < 2e"/2° | then E[eX /6] < 2.
e. Show that if E[GXQ/G"Q] < 2, then X is 1802-subgaussian
f. Show that if X is o?-subgaussian, then E [XZ‘I] < (40?)%q! for all g € N.
g. Show that if E [ng} < (402)4q! for all ¢ € N, then E |:6X2/80.2:| <2.

Solution.  a. First note that ¢ (0) = ¢'(0) = 0 for all random variables X, and ¢"(0) = Var X follows from the
expression for ¢ ()) given in the proof of Lemma 3.6. Hence ¢)(A) = $A? Var X + 0(A?) and so it follows from
the definition of subgaussian that Var X < o2.

b. For simplicity assume X > 0 almost surely. By the Fundamental Theorem of Calculus,

(oo}

P(x) =<I>(0)+/m ' (t) dt:<1>(0)+/ Liicpy @'(t) dt
0 0
so E®(X) = ®(0) +E/oo Lix> @ (8) dt
0
= ®(0) +/Oo D' (t) EX x>y di
0

by Fubini’s/Tonelli’s Theorem (the integrand is non-negative by the conditions given), giving the result.



c. Since E X = 0, we can apply the Chernoff bound to both the upper and lower tails to obtain
PX >t <e /2" and P[X < —f]<e /2,

For the second bound, we have that P[X < —t] = P[-X > t]. Now, we can sum the above inequalities to
obtain o
P[|X|>t]=P[X >t]+P[-X >t] <2t /%

since t > 0.
d. Take ®(t) = et/ 6"2, which is differentiable and increasing on R*. Then by b we have
1 o0 t2/60'2
EO(|X|)=14+ — te P[|X| > t]dt
302 Jo
EeXz/ﬁUQ <1+ 3% /oo tet2/60226—t2/202 i
0= Jo
2 o —2/302
=1 + @ A te dt
=14+1=2.

e. Recall that we assume E[X] = 0. We have for any A,

k
B = By AT

k!
k>0
)\2 ) ()\X)k:72
=1+ ElX > 22—
k>2
\? (IAX])* 2
<1+ S EX*Y ]
|
2 = ko (B+1)(k+2)
N e (AXDE
<1+ EX > =]
k>0
)\2
=1 + ? E[X2€|/\X|]
Let ¢ > 0. Using Young’s inequality we have,
cA?  X?
AXT= =+ 50

Therefore,

)\2 c 2 2
E[eM] <1+ Ee% E[X2e% |

A2 o 2 X? :
<1+ %e > E[eXT] (using the fact that 22— < 6)2(7)
c

c 2
<1+ cA2e T (by choosing ¢ = 60?)

Now we use the following Lemma.



Lemma 1. For x > 0, we have :
1+ 2ze® < &*

Proof. 1t is sufficient to show the inequality between the coefficients in the series expansion of both sides. For

the left-hand side, the coefficient of z* is ﬁ, and for the right-hand expression, the coefficient of z* is %’?

So the inequality is equivalent to having for any k£ > 1:

2 2t
k-1 = &
— 2k < 2F

— k <2k

which is true for any & > 1. O

Using this we now have,

a2
EeM] <1+ XS

2c22
2

<e

120252
= e 2

We conclude that X is 1202-subgaussian and thus 18c2-subgaussian.

. Let ®(z) = 227 for ¢ € N. Then ®'(x) = 2q2?9~!. Since ® is differentiable and increasing, we will use part
(b), i.e.

E[X?] = ®(0) +/ 2qt*1 L P(|1X| > t)dt
0
< 4q /Oo $2a-1=t/20% gy
0

Now, performing the change of variable u = %, we can rewrite the inequality as
oo
E[X?] < 4q/ (20%u)T e o2 du
0

oo
:2‘”102‘1/ wl te %du
0
= 20t15244
< (40”)%!,

where the second last line holds from the definition of the gamma function evaluated at a natural number.



g. We can prove this directly by expanding E [eX */ 8"2} as a power series:

Problem 3.2 (Tightness of Hoeffding’s Lemma). Show that the bound of Hoeffding’s lemma is the best possible by
considering P(X = a) = P(X =b) = 1.

Solution. The distribution suggested has variance (b — a)?/4, so the tightness follows from Problem 3.1a.

Problem 3.3 (Chernoff bound vs. moments). Show that for ¢t > 0,

(X - BX)]

E
P[X -EX >1] < inf < infe ME [eMXfEXq ,
b=

tp A>0

Solution. We can see that, for any A > 0,

E [eA(X—EX)] >E {1X7EX>O e/\(X—EX)}

AP (X —EX)P
=E|1x_Ex>0 Z(—)

p!

p=0
i N(X —-EX)!

where the final line follows since the terms (X — E X )f_ are non-negative for all p > 0. Therefore, we have

MR {ek(XfEX)} . (i N E [(XpT EX){H) / (i ,\;;g:»)

p=0 p=0

_ NE[(X -EX)L] /e
o { MR

_ P
p>0 tP

Y

)

where the second inequality follows since the terms in both sums are all non-negative and the sums converge. Since
the right-hand side of our final result is independent of A\, we could optimize the left-hand side with respect to A to
obtain the final result.



Solution (alternative). Starts similarly to the previous one, but the end is different. For any A > 0,

E[e)\(X—E[X])] >E [1X7E[X]>O eA(X—E[X])}

Lm0 f:wx—mm]

p=0 P

:Z?E [1x_gx)>0 (X — E[X])?]

p=0
)\t PE [(X — B[X])" ]

_Z o
pO

(Bl —EX))

(At)P
>Z p! p>0 tP

Therefore,
_ P
oMt E[eA(X—E[X])] > inf E [(X E[X])+]

p>0 tp ’

which yields the result given that the inequality holds for all A > 0.
Remark: We should consider t > 0.

Problem 3.4.

Problem 3.5 (Maxima of subgaussian variables). Let X1, Xo,... be (not necessarily independent) o2-subgaussian
random variables. Show that

P [m<ax{Xi -EX;]} > 1+ e)aV?logn] 22250 for all e > 0.

Solution. We have

NG

P [max(X; - BIX]) > (1 + o Zlogn| =P

i<n

{XZ- -E[X;] > (1+ 6)0\/@}]

i=1

<ZP[X E[X ]Z(l+e)0\/@]

n 2

< Z exp{ ( (1+ e)aV?logn) /(202)}
i=1 .

= 2nn(1+6)2 H—Oo> 0’

for all € > 0.
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