
Probability in High Dimensions

Solutions to Exercises, Week 6

August 30, 2020

3.1 Subgaussian variables and Chernoff bounds

Problem 3.1 (Subgaussian variables). There are several different notions of random variables with a Gaussian
tail that are all essentially equivalent up to constants. The aim of this problem is to obtain some insight into
these notions.

a. As a warmup exercise, show that if X is σ2-subgaussian, then VarX ≤ σ2.

b. Show that for any increasing and differentiable function Φ

EΦ(|X|) = Φ(0) +

∫ ∞
0

Φ′(t)P[|X| ≥ t] dt

c. In the following five parts, assume for simplicity that EX = 0. Show that if X is σ2-subgaussian, then
P[|X| ≥ t] ≤ 2e−t

2/2σ2

.

d. Show that if P[|X| ≥ t] ≤ 2e−t
2/2σ2

, then E[eX
2/6σ2

] ≤ 2.

e. Show that if E[eX
2/6σ2

] ≤ 2, then X is 18σ2-subgaussian

f. Show that if X is σ2-subgaussian, then E
[
X2q

]
≤ (4σ2)qq! for all q ∈ N.

g. Show that if E
[
X2q

]
≤ (4σ2)qq! for all q ∈ N, then E

[
eX

2/8σ2
]
≤ 2.

Solution. a. First note that ψ(0) = ψ′(0) = 0 for all random variables X, and ψ′′(0) = VarX follows from the
expression for ψ′′(λ) given in the proof of Lemma 3.6. Hence ψ(λ) = 1

2λ
2 VarX+ o(λ2) and so it follows from

the definition of subgaussian that VarX ≤ σ2.

b. For simplicity assume X ≥ 0 almost surely. By the Fundamental Theorem of Calculus,

Φ(x) = Φ(0) +

∫ x

0

Φ′(t) dt = Φ(0) +

∫ ∞
0

I{t≤x} Φ′(t) dt

so EΦ(X) = Φ(0) + E

∫ ∞
0

I{X≥t}Φ′(t) dt

= Φ(0) +

∫ ∞
0

Φ′(t)EI{X≥t} dt

by Fubini’s/Tonelli’s Theorem (the integrand is non-negative by the conditions given), giving the result.
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c. Since EX = 0, we can apply the Chernoff bound to both the upper and lower tails to obtain

P[X ≥ t] ≤ e−t
2/2σ2

and P[X ≤ −t] ≤ e−t
2/2σ2

.

For the second bound, we have that P[X ≤ −t] = P[−X ≥ t]. Now, we can sum the above inequalities to
obtain

P[|X| ≥ t] = P[X ≥ t] + P[−X ≥ t] ≤ 2e−t
2/2σ2

since t ≥ 0.

d. Take Φ(t) = et
2/6σ2

, which is differentiable and increasing on R+. Then by b we have

EΦ(|X|) = 1 +
1

3σ2

∫ ∞
0

tet
2/6σ2

P[|X| ≥ t] dt

E eX
2/6σ2

≤ 1 +
1

3σ2

∫ ∞
0

tet
2/6σ2

2e−t
2/2σ2

dt

= 1 +
2

3σ2

∫ ∞
0

te−t
2/3σ2

dt

= 1 + 1 = 2.

e. Recall that we assume E[X] = 0. We have for any λ,

E[eλX ] = E[
∑
k≥0

(λX)k

k!
]

= 1 +
λ2

2
E[X2

∑
k≥2

2
(λX)k−2

k!
]

≤ 1 +
λ2

2
E[X2

∑
k≥0

(|λX|)k

k!

2

(k + 1)(k + 2)
]

≤ 1 +
λ2

2
E[X2

∑
k≥0

(|λX|)k

k!
]

= 1 +
λ2

2
E[X2e|λX|]

Let c > 0. Using Young’s inequality we have,

|λX| ≤ cλ2

2
+
X2

2c

Therefore,

E[eλX ] ≤ 1 +
λ2

2
e
cλ2

2 E[X2e
X2

2c ]

≤ 1 +
cλ2

2
e
cλ2

2 E[e
X2

c ] (using the fact that 2
X2

2c
≤ eX

2

2c )

≤ 1 + cλ2e
cλ2

2 (by choosing c = 6σ2)

Now we use the following Lemma.
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Lemma 1. For x ≥ 0, we have :
1 + 2xex ≤ e2x

Proof. It is sufficient to show the inequality between the coefficients in the series expansion of both sides. For
the left-hand side, the coefficient of xk is 2

(k−1)! , and for the right-hand expression, the coefficient of xk is 2k

k! .
So the inequality is equivalent to having for any k ≥ 1:

2

(k − 1)!
≤ 2k

k!

⇐⇒ 2k ≤ 2k

⇐⇒ k ≤ 2k−1

which is true for any k ≥ 1.

Using this we now have,

E[eλX ] ≤ 1 + cλ2e
cλ2

2

≤ e 2cλ2

2

= e
12σ2λ2

2

We conclude that X is 12σ2-subgaussian and thus 18σ2-subgaussian.

f. Let Φ(x) = x2q for q ∈ N. Then Φ′(x) = 2qx2q−1. Since Φ is differentiable and increasing, we will use part
(b), i.e.

E[X2q] = Φ(0) +

∫ ∞
0

2qt2q−1 P(|X| ≥ t)dt

≤ 4q

∫ ∞
0

t2q−1e−t
2/2σ2

dt.

Now, performing the change of variable u = t2

2σ2 , we can rewrite the inequality as

E[X2q] ≤ 4q

∫ ∞
0

(2σ2u)q−1e−uσ2du

= 2q+1σ2q

∫ ∞
0

uq−1e−udu

= 2q+1σ2qq!

≤ (4σ2)qq!,

where the second last line holds from the definition of the gamma function evaluated at a natural number.
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g. We can prove this directly by expanding E
[
eX

2/8σ2
]
as a power series:

E
[
eX

2/8σ2
]

=

∞∑
q=0

E[X2q]

8qσ2qq!

≤
∞∑
q=0

(4σ2)qq!

8qσ2qq!

=

∞∑
q=0

2−q = 2.

Problem 3.2 (Tightness of Hoeffding’s Lemma). Show that the bound of Hoeffding’s lemma is the best possible by
considering P (X = a) = P (X = b) = 1

2 .

Solution. The distribution suggested has variance (b− a)2/4, so the tightness follows from Problem 3.1a.

Problem 3.3 (Chernoff bound vs. moments). Show that for t ≥ 0,

P[X −EX ≥ t] ≤ inf
p≥0

E
[
(X −EX)p+

]
tp

≤ inf
λ≥0

e−λtE
[
eλ(X−EX)

]
.

Solution. We can see that, for any λ ≥ 0,

E
[
eλ(X−EX)

]
≥ E

[
1X−EX>0 e

λ(X−EX)
]

= E

[
1X−EX>0

∞∑
p=0

λp(X −EX)p

p!

]

= E

[ ∞∑
p=0

λp(X −EX)p+
p!

]

=

∞∑
p=0

λpE
[
(X −EX)p+

]
p!

,

where the final line follows since the terms (X −EX)p+ are non-negative for all p ≥ 0. Therefore, we have

e−λtE
[
eλ(X−EX)

]
≥

( ∞∑
p=0

λpE
[
(X −EX)p+

]
p!

)/( ∞∑
p=0

λptp

p!

)

≥ inf
p≥0

{
λpE

[
(X −EX)p+

]
p!

/
λptp

p!

}

= inf
p≥0

E
[
(X −EX)p+

]
tp

,

where the second inequality follows since the terms in both sums are all non-negative and the sums converge. Since
the right-hand side of our final result is independent of λ, we could optimize the left-hand side with respect to λ to
obtain the final result.
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Solution (alternative). Starts similarly to the previous one, but the end is different. For any λ ≥ 0,

E[eλ(X−E[X])] ≥ E
[
1X−E[X]>0 e

λ(X−E[X])
]

= E

[
1X−E[X]>0

∞∑
p=0

(λ(X −E[X]))p

p!

]

=

∞∑
p=0

λp

p!
E
[
1X−E[X]>0 (X −E[X])p

]
=

∞∑
p=0

(λt)p

p!

E
[
(X −E[X])p+

]
tp

≥
∞∑
p=0

(λt)p

p!
inf
p≥0

E
[
(X −E[X])p+

]
tp

.

Therefore,

e−λtE[eλ(X−E[X])] ≥ inf
p≥0

E
[
(X −E[X])p+

]
tp

,

which yields the result given that the inequality holds for all λ ≥ 0.
Remark: We should consider t > 0.

Problem 3.4.

Problem 3.5 (Maxima of subgaussian variables). Let X1, X2, . . . be (not necessarily independent) σ2-subgaussian
random variables. Show that

P

[
max
i≤n
{Xi −E[Xi]} ≥ (1 + ε)σ

√
2 log n

]
n→∞−−−−→ 0 for all ε > 0.

Solution. We have

P

[
max
i≤n
{Xi −E[Xi]} ≥ (1 + ε)σ

√
2 log n

]
= P

[
n⋃
i=1

{
Xi −E[Xi] ≥ (1 + ε)σ

√
2 log n

}]

≤
n∑
i=1

P
[
Xi −E[Xi] ≥ (1 + ε)σ

√
2 log n

]
≤

n∑
i=1

2 exp

{
−
(

(1 + ε)σ
√

2 log n
)2/

(2σ2)

}
= 2n

1

n(1+ε)2
n→∞−−−−→ 0,

for all ε > 0.
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