Probability in High Dimensions

Solutions to Exercises, Week 5

August 14, 2020

2.4 Variance identities and exponential ergodicity

Problem 2.11 (Covariance identities). Let P, be a reversible ergodic Markov semigroup with stationary measure
I
a. Prove the following identity:

Cov,(f,g9) = 2/0 E(P;f, Pig)dt.

b. Prove the following identity:
Covu(f.)= [ (7. Py
0

c. Let X ~ N(0,%) be a random vector with each of the entries having positive correlation, i.e. ¥;; > 0 for all
i,7. Prove that this implies the following much strong positive association property: for every pair of functions
f,g that are coordinatewise increasing, we have Cov(f(X),g(X)) > 0.

Solution.  a) Since L is self-adjoint

d d
&COV(Ptfv-Ptg) = &(Ptf’Ptm

= (LP.f, Pg) + (Pif, LPg)
= 2P f,LPg) = —2E(P:f, Prg).

Now, since P; is ergodic,

COV(f7g) = COV(PUf7 POg) - tl—l>I£lo COV(Ptfa Ptg)
> d
= */O aCOV(PtﬁPtg) dt
0

b) We have

—E(Pif, Pig) = (P.f, LPg)
= <f7Pt£Ptg>
= <f7 £P2tg> = _g(f7 P2tg)

since P; is self-adjoint and £ and P, commute. A change of variable yields



c¢) Let X ~ N (0,X) be a centred Gaussian vector in R” with covariance matrix 3. Assume that X, ; > 0 for all
i.7. Then for any two coordinate-wise increasing functions f, g we have that

Covyu(f,9) = E[f(X)g(X)] — E[f(X)]E[g(X)]
= E[f(2"2Y)g(312Y)] - E[f(212Y)E[g(21/?Y)
= Cov,[f,d],

where v = N(0,1), f(-) = f(£'/2.) and §(-) = g(='/2.). Then
Cov, [f, g]
- | wewirg
= [ ae, [vRi© - vRa©)
= /000 dt/u(dx)V/u(dw)f (e_tx +Vv1- e—thp)
: V/V(df)f e_tx + mw) g (e_ta: + m&)
/ dt/ (dz) / v(dE)V f (e x4+ V1 —e—2tz/J) -Vg (e_tx—i— V1 —e—2t§)
/ dt/ (dx) / / (dy)Vf ( M2 431 - e—2t21/2¢)
Vg (e_tZl/Qx V1o ef%zl/%) .

Then notice that
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f (e_tZl/Qx +4/1 - e—2t21/2w) = Zajf (e_tZl/Qx +4/1 - e—2t21/2¢> (El/Q)iJe_t,
j=1

and thus
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0;f (e_tZl/Qa: +v1- e—QtZl/Qw) Ory (e_tEl/za: +v1- e—QtZl/Qw) e 2t 2(21/2) (228

k=1 j=1 i=1
n n
-3 Yo (e_t21/2x V1o e—2tz:1/2w) Oy (e_tZl/Qx V1o e_2t21/2w> e 2%y,
k=1 j=1

since £/2 is symmetric. The result follows: all terms are positive since f, g are coordinate-wise increasing, whence
their partial derivatives are all positive, and all entries of ¥ are positive.

Problem 2.12 (Local Poincaré inequalities I). Let P, be a Markov semigroup with generator L. For the purposes
of this problem, we do not assume the existence of a stationary measure.



a. Prove the following variance identity:
t
PAP) = (PP =2 [ PL(PS P)ds

b. Suppose that we can prove an identity of the form
D(Psf, P f) < a(s)PL(f, f)
for some function o : Ry — Ry. Conclude that
Pi(f*) = (Pf)* < c(t)PL(f, f),
where c(t fo 2a(s)ds. Such an inequality is called a local Poincaré inequality.

c. Let (Wt)teR+ be standard Brownian motion. Compute an explicit expression for its semigroup and generator,
and show that in this case

F(Ptf, Ptf) § Ptr(fa f)

Show that the local Poincaré inequality consequently provides an alternative proof of the Gaussian Poincaré
inequality using Brownian motion.

d. Let v be a positive measure on R such that [, (1 Alz|)v(dx) < oo, and let X be an infinitely divisible random
variable whose characteristic function has the Lévy-Khintchin representation E[e™] = exp { [(e™* — 1)v(dz)}.
Then, X ~ X1, where (X;)ier, is the Lévy process with Lévy measure v. The latter is Markov with generator

r) = / D, f(x)r(dy), where Dyf(x) = f(z +y) — f(z).

Use the above machinery to prove the following Poincaré inequality:

Var[f(X)] < B [ / (Dy (X)) w(dy) |

In particular, deduce Poincaré inequalities for the Poisson distribution and the one-sided exponential distri-
bution (the latter being distinct from both Poincaré inequalities deduced in Problem 2.9).

Solution. a. Consider

d

£Pt,S<Psf>2 = —LP,_ (P f)* + 2P, [(Ps f)(LPs f)]

= _Ptfs [E(Psf)z - 2(Psf>(£Psf)} = _2Ptst(PSfa Psf)
Integrating both from 0 < s < ¢ gives
| GoPeapagyids = (PP = ) = -2 [ P TP P)ds
o @s 0

as required.

b. Applying the inequality T'(Ps f, Ps f) < a(s)PsL(f, f) to equality of previous, gives

P(f?) — (Pif)? =2 / P, .T(P.f, P.f)d /0 a(s)Pr_P.T(f, f)ds = PL(f. ) /0 20(s)ds = PL(f, f)e(t)
(1)

as required.



C.

d.

Brownian Motion has the following semigroup

Pif(z) = E[f(xz +Vte)] €~ N(0,1)

with generator derived from

LPf(@) = LB (@ + Vi)

/ € 1., o 1.,
= E[f'(z + \/EE)Q—\/E] = B[ f"(@ + Vi) = Pig ["(x)
implying Lf(z) = 3 f”(x). The inner coming from applying Eleg(e)] = E[¢' ()], with g(e) = f'(x + V/te) and
g'(€) = f"(z + Vte)V/t. Noting that L(f2) = (f)? + ff" we see that

DU, ) = 5 [£07) - 2027] = 3 ()%
Therefore while noting that L P, f(z) = P, f'(z), we have

L(P.f, Pif) = P.(f)? = PI(f, f)

N |

(Pf)]P =5 (P <

NN

with the inequality coming from the convexity of 22. Therefore we can apply local Poincare inequality with
a(s) =1, and thus ¢(t) = 2¢, giving

PA(f?) = (R <tP |(F)?].

Next note we can rescale Brownian motion to obtain a N (0, 1) random variable. Letting h be some integrable
function under N(0,1) measure, then we can state

Var(he) = var (1 (1))

where B; is Brownian motion. Therefore substituting f(xz) = h (%) and f'(z) = %h/ (%) into the local

Poincare inequalities of previous will give

Var(h(e)) = E[h(e)®] — E*[h(e)]
= E[f(Bt)ﬂ - Ez[f(Bt)]

= P(f%) — (Pf)? <tP, ((f')?) = tE[(f'(B))

as required.

Problem 2.13 (Local Poincaré inequalities IT). The approach of Problem 2.12 makes it possible to obtain Poincaré
inequalities using Markov processes that do not admit a stationary measure. However, even for ergodic Markov
processes, it can be useful to develop a Poincaré inequality for the stationary measure pu by letting t — oo in a local
Poincaré inequality. The reason for this is the following result that will be proved in this problem.



Theorem 1. The following are equivalent:
L. cIy(f, f) > T(f, f) for all f (Bakry-Emery criterion).
2. T(Pif, Pif) < e ?/P,I(f, f) for all f,t (local ergodicity).
3. Pi(f?) — (Pf)? < c(1 —e2/9)BI(f, f) for all f,t (local Poincaré).
Here we defined
Ca(f,9) = 5 {LT(f,9) - T(f, Lg) ~ T(L,9)}.

This is called the iterated carré du champ or I's-operator. (Further discussion is provided in the notes, page 43).
Let us prove the various tmplications of the above theorem.

a. Prove 2 = 3. Hint: this follows easily as in Problem 2.12.
b. Prove 1 = 2. Hint: LP,_T(P,f,Psf).
c. Prove 8= 1. Hint: limyyot=2 {P,(f?) — (P:f)? — c(1 — e 2/)PI(f, f)}.
d. This part is too long and is given in the notes.
Solution.  a. By assumption, we have I'(P,f, P,f) < e 2/*P,I(f, f) for all f and t. Now, since 2]3 e~2s/eds =
¢(1 — e=2/¢), then by Problem 2.12 (b) we have that
P(f?) = (Pf)? < o(1 = e/ PI(f, ).
for all f and t.
b. By the chain rule, we have that

d d 1
%Ptst(Psf» Psf) = £Pt75 (2»6 ((Psf)2) - Psfﬁ(Psf)>
1

= *Ept—s (

SL((Puf)?) - Psfﬁ(Psﬁ) +

Pt—s (;E <2Psfjs(Psf)> - %Pst(Psf) - Psf% (‘C(Paf))>

=P (fﬁr(Psfa Psf) +L (Psfﬁ(Psf)) - (E(Psf))Q - (Psfﬁz(Psf)))

= Pt—s (—ﬂF(PSf, Psf) +2r (PsfaL(Psf)))
= _2Ptfs]-—‘2 (Psf7 Psf)

-2
< — P T(PS P,

where the inequality follows from assuming that condition (1) in the above theorem is true. Now, since
T'(f, f) > 0 for all f, we have that P,_,T'(f, f) > 0, which implies that

s P s DB f P f) =2
P,_I(P.f,Pf) ~ ¢

for all f, which we can also write as

d -2
—log P,_ (P f, Py f) < —.
ds 0og I ( f f) c



Then, integrating both sides from s = 0 to t, we have that

2t

log I(P.f, P.f) ~log PT(f, f) < —=,

which finally implies that
U(P.f, P.f) < e 2°PI(f, f).

c. We have from 2.12(a)
0> Py(f?) = (Pf)? = c(1 — e /) RI(f, f)
=2 / C PT(Pf Puf)ds — (1 — e ) RIS, f)
s=0

t -
_ d o o
= 2/S=0 {Ptf(f, f)+ /u=o duPtqu(Psfv Psf)du] ds —c(1 — e 2/ PT(f, f)

and from part (b)
= 2tP,I( / / Pi_uDo(Pyf, Pof)duds — c(1 — e 2/ P,L(f, f)
s=0 Ju=0

= 2t BT ( / 0/ . |:PtF2 £ ) / (- ~)dr] duds — ¢(1 — e 2/)PI(f, f)

2

2
= 2P )~ ARTa(f. N5 = 2PTG )+ e (%) AT + o)

c

after cancelling and and expanding the remaining P; terms
2
=-I(f, 2 =202 (f, f)t* + o(t?).

After dividing by ¢?> and taking limits we conclude that F(f H_ Ts(f, f) < 0 or equivalently that T'(f, f) <
Lo (f, f)-

d. Let us first compute T'(f, f)
2U(f, f) = L(f?) —2fLf
3 w, af 0*f  (of
oy +22[ (%”—wﬁf

= 2HVfII2
L(f, f) = VI
Then

- §£F<f,f) ~T(fLS).



First we compute

LU(f, ) = £IIVfII2

ow 0

J:1

J

B oW of 0%*f 2
- 722,2 o0x; 833] O0x;0x; ZZ l(@xﬁ@)
and
ow 8
L(fLf) = 6 fﬁf
_ ow 8f 8W 8£f
82£f af oLf
* Z [ 0x; 0x;

) af OLf
=[Lf*+ fL f+2za o O,

whence it follows that

- |5

4]

5

(LA + FL2F + 2V VLF) = (Lf)? = fL2f]

DU £0) = 3 [EULS) — (EF) — F£2]
1
=3

=(V/,VLf)

B of of o*wW oW of o*f of
D(f.Lf) = ;azia@axiaxj izazz dx; Ox;01; Z

Therefore

of f
Ox; 2x;0x,

Bf

Oxj 0x20x;

B oW of 82f o%f \> of o3f
- _2; (9581 8733](95628.7% +2z§j: [<8$18$] * 671‘38256163%

of of 0*W oW of *f
- 2; Ox; Ox; Ox;0x; * 22 0x; Ox; 0x; 81‘]

and after cancellations

_ of of 0*W
= 2; (8I185E]) Z dx; 6758331’2(91']
=2(Vf,Vf) +2<Vf,AWVf>

> 2V f, AWV f)

> 2|V f|1?

F2(f7f) Zpr(faf)v

22 o,

of 03f
Ox; 02201 ; 20z



by the p-uniform convexity assumption.
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