Probability in High Dimensions

Solutions to Exercises, Week 2

July 25, 2020

2 Variance bounds and Poincaré inequalities

2.1 Tensorization and bounded differences

Problem 2.1 (Banach-valued sums). Let X1,...,X, be independent random variables with values in a Banach
space (B, || - ||B). Suppose these random variables are bounded in the sense that || X;||p < C a.s. for every i. Show
that

1 n
w2 X

02
Var ( ) < —.
n
B
Solution. Alternative 1:

Let z1, 22, a be elements of B with norm bounded by C and n € N. Then
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which in turn yields
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Set a = %E]ngxk and f(x1,...,2,) = H%Z?:l xiHB then
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By Corollary 2.4 (Bounded Differences) we obtain

Var(f(X1,..., Xn)) < iE




Alternative 2:

In the spirit of an earlier version of this solution it is also possible to find the same bound by the reverse triangle
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Alternative 3:
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Problem 2.2 (Rademacher process). Leteq,...,

(
P[e; = +1] = % (also called Rademacher variable), let T C R™.
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Prove the following nontrivial fact:
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en be independent symmetric random Bernoulli random variables
The following identity is completely trivial:

Thus taking the supremum inside the variance costs at most a constant factor.



Solution. Let (x,y) :== > ;_, xxy) denote the inner product between vectors z and y in R™. Define the function
free{-1,1}" = f(e) :== sup,er(e, t). If we assume that for any € € {—1,1}" the supremum in sup,.; (e, t)
is attained (this would be the case if the set T is compact, by the extreme value theorem), then we
can let t(e) € argmax;er(e,t) denote any of its optimizers. Then, for any ¢ € {—1,1}" and any i € {1,...,n}, if
we let z(¢) € argmin,er_11y f(€1,--.,8i-1,2,€i41,...,En) We have
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The proof follows by applying Corollary 2.4 upon noticing that since t(g) € T we have
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More generally if 7 is bounded then by continuity we can replace it by its closure which is compact. Finally,
if 7 is unbounded there must be a basis vector e; such that sup,c;(e;,t) = 0o, and since any basis vectors e; can
be written as a linear combination of two elements of {£1}", we can always find an element ¢ € {£1}"™ such that
sup,c7(€,t) = oo. In this case, with € uniform in {£1}”, we have sup,c;(€,t) = oo with positive probability and
the inequality holds trivially.

Problem 2.3 (Bin packing).

Solution. (a)

Dif(Xy,...,Xy) =sup f(X1,..., Xiz1, 20, Xig1, .., X)) — i?_ff(le s X1, 20, X, X)),

The sup will be at worst B,, + 1 and the inf at worst B,, — 1. But, suppose that inf,, = B,, — 1. This means that
if we reduce the size of X; to 0, then we gain a bin. Therefore, there is an optimal allocation with B,, bin in which
X; is a single occupant of a bin. Thus in this case, since X; < 1 we can increase its D; < 1. (b) Trivial since the
total size of the packages Y X; must fit in the total space of the bins which is B,, x 1. Thus nE[X;] < E[B,,].

Problem 2.4 (Order Statistics and spacings). Let Xi,..., X,, be independent random variables, and denote by
Xy = ... =2 X their decreasing rearrangement. Show that

Var [X(y] < FE [(X) = X(r41))’] (1)

for 1 <k <n/2 and that
Var [X(k)} < (n —k+ 1) E [(X(kfl) - X(k))z] (2)

forn/2 <k <n.

Solution. To prove first (1)), we note that for f (X) = X,
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where
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Hence it follows by Corollary 2.4. that we have
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where the last inequality follows from the definition of X(;). One can verify that having ties is not an issue. This
establishes for 1 < k < n —1 but this inequality is not tight for large values of k. To establish , one uses the
increasing rearrangement Xy < ... < X(,) and performs similar calculations.

Problem 2.5 (Convex Poincaré inequalities). Let Xy,...,X,, be independent random variables taking values in
[a,b]. The bounded difference inequalities of Corollary 2.4 estimate the variance Var[f(Xi,...,X,)] in terms of
discrete derivatives D;f or D; f of the function f. The goal of this problem is to show that if the function f is

convex, then one can obtain a similar bound in terms of the ordinary notion of derivative V; f(x) = %—f) in R™.

a. Show that if g : R — R is convezx, then
9(y) —g(x) = ¢'(x)(y —x) for allz,y €R.
b. Show using part a. and Corollary 2.4 that if f : R™ — R is convez, then

Varlf(X1,..., X)] < (b= a)* B|Vf (X1, X))
c. Conclude that if f is conver and L-Lipschitz, i.e., |f(z) — f(y)| < Lz — vyl for all x,y € [a,b]", then
Var[f(X1,...,X,)] < L2(b— a)?.

Solution. a. This can be proven directly from the definition of convexity and the derivative: for any ¢ € [0, 1]
and z,y € R,

(1-t)g(z) +tg(y) > g(x +t(y — x))
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Taking the limit as ¢t — 0 completes the proof.
b. Consider a function g; : [a,b] — [a, b], defined as
9i(2) = f(&1, .0 Tic1, 2, i1y ooy Ty

for some fixed {x1,...,2; 1,Tis1,...,Zn} € [a,0]" P and i € {1,...,n}. This function is convex since f is
convex in all of its arguments. Thus, by part a.,

9i(2) > gi(xi) + gi(2:) (2 — )



for all z,z; € [a,b]. In other words, for all {z1,...,2,,2} € [a,b]"*!,
flry, o mim1, 2,01, - - xn) > f(2) + Vif(2)(z — 24),
where we write « = {x1,...,2,}. Thus, we can bound D] f(x), for all i € {1,...,n}, as
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Finally, invoking Corollary 2.4, we have
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c. Since f is L-Lipschitz, we know that || f(z)|| < L for all = € [a,b]™. Thus, from part b.,
Var[f(X1,..., X,)] < L*(b— a)®.

2.2 Markov semigroups

Problem 2.6 (Some elementary identities). Let P; be a Markov semigroup with generator L and stationary measure
. Prove the following elementary facts:

a) Show that p(Lf) =0 for every f € Dom(L).

b) If ¢: R — R is conver, then Pid(f) = ¢(P.f) when f,$(f) € L*(u).

¢c) If ¢: R — R is convex, then Lo(f) > ¢/ (f)Lf when f,¢(f) € Dom(L).
d) Let f € Dom(L). Show that the following process is a martingale:
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Solution.  a) Recall that the generator is defined as a limit in L?(p), i.e. we have
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In particular, this implies
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Since stationarity implies for all ¢
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we can conclude
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b) This is just the conditional version of Jensen’s inequality, i.e. for any =
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¢) By convexity we have for any y, z that ¢(y) — ¢(z) > ¢'(2)(y — z). Using Jensen’s inequality from above and
with y = P, f(x) and z = f(x), we get
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Taking the limit ¢ — 0 yields the required result.
d) We have
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where we used that [ £f(X,)ds is 7, measurable in the second line and the Markov property in the third.
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