Probability in High Dimensions

Solutions to Exercises, Week 2

July 25, 2020

2 Variance bounds and Poincaré inequalities

2.1Tensorization and bounded differences

Problem 2.1 (Banach-valued sums). Let X_1, \ldots, X_n be independent random variables with values in a Banach space $(B, \|\cdot\|_B)$. Suppose these random variables are bounded in the sense that $\|X_i\|_B \leq C$ a.s. for every *i*. Show that

$$\operatorname{Var}\left(\left\|\frac{1}{n}\sum_{k=1}^{n}X_{k}\right\|_{B}\right) \leq \frac{C^{2}}{n}.$$

Solution. Alternative 1:

Let z_1, z_2, a be elements of B with norm bounded by C and $n \in \mathbb{N}$. Then

$$\begin{aligned} \left\|\frac{z_1}{n} + a\right\|_B &\leq \left\|\frac{z_1}{n} - \frac{z_2}{n}\right\|_B + \left\|\frac{z_2}{n} + a\right\|_B \\ &\leq \frac{2C}{n} + \left\|\frac{z_2}{n} + a\right\|_B \end{aligned}$$

This implies

$$\sup_{\|z_1\|_B \le C} \left\| \frac{z_1}{n} + a \right\|_B \le \frac{2C}{n} + \left\| \frac{z_2}{n} + a \right\|_B$$

which in turn yields

$$\sup_{\|z_1\|_B \le C} \left\| \frac{z_1}{n} + a \right\|_B \le \frac{2C}{n} + \inf_{\|z_2\|_B \le C} \left\| \frac{z_2}{n} + a \right\|_B.$$

Set $a = \frac{1}{n} \sum_{k \neq i} x_k$ and $f(x_1, \dots, x_n) = \left\| \frac{1}{n} \sum_{i=1}^n x_i \right\|_B$ then

$$D_i f(x) = \sup_{\|z\|_B \le C} \left\| \frac{z}{n} + \frac{1}{n} \sum_{k \ne i} x_k \right\|_B - \inf_{\|z\|_B \le C} \left\| \frac{z}{n} + \frac{1}{n} \sum_{k \ne i} x_k \right\|_B$$
$$\leq \frac{2C}{n}.$$

...

By Corollary 2.4 (Bounded Differences) we obtain

$$\operatorname{Var}(f(X_1, \dots, X_n)) \le \frac{1}{4} \mathbf{E} \left[\sum_{i=1}^n (D_i f)^2 \right] \le \frac{1}{4} \left[\sum_{i=1}^n \frac{4C^2}{n^2} \right] = \frac{C^2}{n}.$$

Alternative 2:

In the spirit of an earlier version of this solution it is also possible to find the same bound by the reverse triangle inequality

$$D_i f(x) = \sup_{\|z_1\|_B \le C} \left\| \frac{z}{n} + a \right\|_B + \sup_{\|z_2\|_B \le C} - \left\| \frac{z}{n} + a \right\|_B$$

= $\sup \left\{ \left\| \frac{z_1}{n} + a \right\|_B - \left\| \frac{z_2}{n} + a \right\|_B : \|z_1\|_B \le C, \|z_2\|_B \le C \right\}$
 $\le \frac{1}{n} \sup \left\{ \|z_1 - z_2\|_B : \|z_1\|_B \le C, \|z_2\|_B \le C \right\} \le \frac{2C}{n}.$

Alternative 3:

$$\begin{aligned} \|\frac{1}{n}\sum_{i=1}^{n}X_{i}\|_{B} &= \sup_{t\in B^{\circ}}\left\langle t,\frac{1}{n}\sum_{i=1}^{n}X_{i}\right\rangle \\ D_{i}^{-} &= \sup_{t\in B^{\circ}}\left\langle t,\frac{1}{n}\sum_{i=1}^{n}X_{i}\right\rangle - \inf_{\|z_{i}\|\leq C}\sup_{t\in B^{\circ}}\left\langle t,\frac{1}{n}\sum_{j\neq i}X_{i} + \frac{z_{i}}{n}\right\rangle \\ &= \sup_{\|z_{i}\|\leq C}\left[\sup_{t\in B^{\circ}}\left\langle t,\frac{1}{n}\sum_{i=1}^{n}X_{i}\right\rangle - \sup_{t\in B^{\circ}}\left\langle t,\frac{1}{n}\sum_{j\neq i}X_{i} + \frac{z_{i}}{n}\right\rangle\right] \end{aligned}$$

and since $\sup f - \sup g \leq \sup[f - g]$

$$= \sup_{\|z_i\| \le C} \left[\sup_{t \in B^{\circ}} \left\{ \left\langle t, \frac{1}{n} \sum_{i=1}^{n} X_i \right\rangle - \left\langle t, \frac{1}{n} \sum_{j \ne i} X_i + \frac{z_i}{n} \right\rangle \right\} \right]$$
$$= \sup_{\|z_i\| \le C} \left[\sup_{t \in B^{\circ}} \left\langle t, \frac{z_i}{n} \right\rangle \right]$$
$$\le \frac{C}{n} \sup_{\|w\| \le 1} \left[\sup_{t \in B^{\circ}} \left\langle t, w \right\rangle \right]$$

and since $\sup_{t \in B^{\circ}} \langle t, w \rangle = ||w||_B$

$$= \frac{C}{n} \sup_{\|w\| \le 1} [\|w\|_B] \le \frac{C}{n}$$

Problem 2.2 (Rademacher process). Let $\varepsilon_1, \ldots, \varepsilon_n$ be independent symmetric random Bernoulli random variables $\mathbf{P}[\varepsilon_i = \pm 1] = \frac{1}{2}$ (also called Rademacher variable), let $T \subseteq \mathbb{R}^n$. The following identity is completely trivial:

.

$$\sup_{t\in T} \operatorname{Var}\left[\sum_{k=1}^{n} \varepsilon_k t_k\right] = \sup_{t\in T} \sum_{k=1}^{n} t_k^2.$$

Prove the following nontrivial fact:

$$\operatorname{Var}\left[\sup_{t\in T}\sum_{k=1}^{n}\varepsilon_{k}t_{k}\right] \leq 4\sup_{t\in T}\sum_{k=1}^{n}t_{k}^{2}.$$

Thus taking the supremum inside the variance costs at most a constant factor.

Solution. Let $\langle x, y \rangle := \sum_{k=1}^{n} x_k y_k$ denote the inner product between vectors x and y in \mathbb{R}^n . Define the function $f : \varepsilon \in \{-1, 1\}^n \to f(\varepsilon) := \sup_{t \in T} \langle \varepsilon, t \rangle$. If we assume that for any $\varepsilon \in \{-1, 1\}^n$ the supremum in $\sup_{t \in T} \langle \varepsilon, t \rangle$ is attained (this would be the case if the set T is compact, by the extreme value theorem), then we can let $t(\varepsilon) \in \arg \max_{t \in T} \langle \varepsilon, t \rangle$ denote any of its optimizers. Then, for any $\varepsilon \in \{-1, 1\}^n$ and any $i \in \{1, \ldots, n\}$, if we let $z(\varepsilon) \in \arg \min_{z \in \{-1, 1\}} f(\varepsilon_1, \ldots, \varepsilon_{i-1}, z, \varepsilon_{i+1}, \ldots, \varepsilon_n)$ we have

$$\begin{split} D_i^- f(\varepsilon) &:= f(\varepsilon) - \min_{z \in \{-1,1\}} f(\varepsilon_1, \dots, \varepsilon_{i-1}, z, \varepsilon_{i+1}, \dots, \varepsilon_n) \\ &= f(\varepsilon) - f(\varepsilon_1, \dots, \varepsilon_{i-1}, z(\varepsilon), \varepsilon_{i+1}, \dots, \varepsilon_n) \\ &= \sup_{t \in T} \langle \varepsilon, t \rangle - \sup_{t \in T} \langle (\varepsilon_1, \dots, \varepsilon_{i-1}, z(\varepsilon), \varepsilon_{i+1}, \dots, \varepsilon_n), t \rangle \\ &\leq \langle \varepsilon, t(\varepsilon) \rangle - \langle (\varepsilon_1, \dots, \varepsilon_{i-1}, z(\varepsilon), \varepsilon_{i+1}, \dots, \varepsilon_n), t(\varepsilon) \rangle \\ &= \langle (0, \dots, 0, \varepsilon_i - z(\varepsilon), 0, \dots, 0), t(\varepsilon) \rangle \\ &\leq 2 |t(\varepsilon)_i|. \end{split}$$

The proof follows by applying Corollary 2.4 upon noticing that since $t(\varepsilon) \in T$ we have

$$\sum_{i=1}^n (D_i^-f(\varepsilon))^2 \leq 4\sum_{i=1}^n t(\varepsilon)_i^2 \leq 4\sup_{t\in T}\sum_{i=1}^n t_i^2.$$

More generally if \mathcal{T} is bounded then by continuity we can replace it by its closure which is compact. Finally, if \mathcal{T} is unbounded there must be a basis vector \mathbf{e}_i such that $\sup_{t\in\mathcal{T}}\langle \mathbf{e}_i,t\rangle = \infty$, and since any basis vectors \mathbf{e}_i can be written as a linear combination of two elements of $\{\pm 1\}^n$, we can always find an element $\varepsilon \in \{\pm 1\}^n$ such that $\sup_{t\in\mathcal{T}}\langle \varepsilon,t\rangle = \infty$. In this case, with ϵ uniform in $\{\pm 1\}^n$, we have $\sup_{t\in\mathcal{T}}\langle \epsilon,t\rangle = \infty$ with positive probability and the inequality holds trivially.

Problem 2.3 (Bin packing).

Solution. (a)

$$D_i f(X_1, \dots, X_n) = \sup_{z_i} f(X_1, \dots, X_{i-1}, z_i, X_{i+1}, \dots, X_n) - \inf_{z_i} f(X_1, \dots, X_{i-1}, z_i, X_{i+1}, \dots, X_n)$$

The sup will be at worst $B_n + 1$ and the inf at worst $B_n - 1$. But, suppose that $\inf_{z_i} = B_n - 1$. This means that if we reduce the size of X_i to 0, then we gain a bin. Therefore, there is an optimal allocation with B_n bin in which X_i is a single occupant of a bin. Thus in this case, since $X_i \leq 1$ we can increase its $D_i \leq 1$. (b) Trivial since the total size of the packages $\sum X_i$ must fit in the total space of the bins which is $B_n \times 1$. Thus $n\mathbb{E}[X_1] \leq \mathbb{E}[B_n]$.

Problem 2.4 (Order Statistics and spacings). Let $X_1, ..., X_n$ be independent random variables, and denote by $X_{(1)} \ge ... \ge X_{(n)}$ their decreasing rearrangement. Show that

$$\operatorname{Var}\left[X_{(k)}\right] \le k \mathbb{E}\left[\left(X_{(k)} - X_{(k+1)}\right)^2\right] \tag{1}$$

for $1 \leq k \leq n/2$ and that

$$\operatorname{Var}\left[X_{(k)}\right] \le (n-k+1) \mathbb{E}\left[(X_{(k-1)} - X_{(k)})^2\right]$$
(2)

for $n/2 < k \leq n$.

Solution. To prove first (1), we note that for $f(X) = X_{(k)}$

 $D_i^- f(X) = X_{(k)} - \inf_Z f(X_{1:i-1}, Z, X_{i+1:n})$

where

$$\inf_{Z} f(X_{1:i-1}, Z, X_{i+1:n}) = \begin{cases} X_{(k)} & \text{if } X_i < X_{(k)}, \\ X_{(k+1)} & \text{if } X_i \ge X_{(k)}. \end{cases}$$

Hence it follows by Corollary 2.4. that we have

$$\operatorname{Var}\left[X_{(k)}\right] \leq \mathbb{E}\left[\sum_{i=1}^{n} \left(D_{i}^{-}f\left(X\right)\right)^{2}\right]$$
$$\leq \mathbb{E}\left[\sum_{i=1}^{n} \mathbb{I}\left(X_{i} \geq X_{(k)}\right) \left(X_{(k)} - X_{(k+1)}\right)^{2}\right]$$
$$\leq k\mathbb{E}\left[\left(X_{(k)} - X_{(k+1)}\right)^{2}\right]$$

where the last inequality follows from the definition of $X_{(k)}$. One can verify that having ties is not an issue. This establishes (1) for $1 \le k \le n-1$ but this inequality is not tight for large values of k. To establish (2), one uses the increasing rearrangement $X_{(1)} \le ... \le X_{(n)}$ and performs similar calculations.

Problem 2.5 (Convex Poincaré inequalities). Let X_1, \ldots, X_n be independent random variables taking values in [a, b]. The bounded difference inequalities of Corollary 2.4 estimate the variance $\operatorname{Var}[f(X_1, \ldots, X_n)]$ in terms of discrete derivatives $D_i f$ or $D_i^- f$ of the function f. The goal of this problem is to show that if the function f is convex, then one can obtain a similar bound in terms of the ordinary notion of derivative $\nabla_i f(x) = \frac{\partial f(x)}{\partial x_i}$ in \mathbb{R}^n .

a. Show that if $g : \mathbb{R} \to \mathbb{R}$ is convex, then

$$g(y) - g(x) \ge g'(x)(y - x)$$
 for all $x, y \in \mathbb{R}$.

b. Show using part a. and Corollary 2.4 that if $f : \mathbb{R}^n \to \mathbb{R}$ is convex, then

$$\operatorname{Var}[f(X_1, \dots, X_n)] \le (b-a)^2 \mathbf{E}[\|\nabla f(X_1, \dots, X_n)\|^2].$$

- c. Conclude that if f is convex and L-Lipschitz, i.e., $|f(x) f(y)| \leq L ||x y||$ for all $x, y \in [a, b]^n$, then $\operatorname{Var}[f(X_1, \ldots, X_n)] \leq L^2(b-a)^2$.
- Solution. a. This can be proven directly from the definition of convexity and the derivative: for any $t \in [0, 1]$ and $x, y \in \mathbb{R}$,

$$(1-t)g(x) + tg(y) \ge g(x+t(y-x))$$
$$g(y) - g(x) \ge \frac{g(x+t(y-x)) - g(x)}{t}$$

Taking the limit as $t \to 0$ completes the proof.

b. Consider a function $g_i : [a, b] \to [a, b]$, defined as

$$g_i(z) \equiv f(x_1, \ldots, x_{i-1}, z, x_{i+1}, \ldots, x_n),$$

for some fixed $\{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n\} \in [a, b]^{n-1}$ and $i \in \{1, \ldots, n\}$. This function is convex since f is convex in all of its arguments. Thus, by part a.,

$$g_i(z) \ge g_i(x_i) + g'_i(x_i)(z - x_i)$$

for all $z, x_i \in [a, b]$. In other words, for all $\{x_1, \ldots, x_n, z\} \in [a, b]^{n+1}$,

$$f(x_1, \ldots, x_{i-1}, z, x_{i+1}, \ldots, x_n) \ge f(x) + \nabla_i f(x)(z - x_i),$$

where we write $x \equiv \{x_1, \ldots, x_n\}$. Thus, we can bound $D_i^- f(x)$, for all $i \in \{1, \ldots, n\}$, as

$$D_i^- f(x) = f(x) - \inf_{a \le z \le b} f(x_1, \dots, x_{i-1}, z, x_{i+1}, \dots, x_n)$$

$$\leq f(x) - \left[f(x) + \inf_{a \le z \le b} \nabla_i f(x)(z - x_i) \right]$$

$$= -\inf_{a \le z \le b} \nabla_i f(x)(z - x_i).$$

Finally, invoking Corollary 2.4, we have

$$\operatorname{Var}[f(X_1, \dots, X_n)] \leq \mathbf{E} \left[\sum_{i=1}^n \left(D_i^- f(X_1, \dots, X_n) \right)^2 \right]$$
$$\leq \mathbf{E} \left[\sum_{i=1}^n \left(\inf_{a \leq z \leq b} \nabla_i f(X_1, \dots, X_n) (z - X_i) \right)^2 \right]$$
$$\leq \mathbf{E} \left[(b - a)^2 \sum_{i=1}^n \nabla_i f(X_1, \dots, X_n)^2 \right]$$
$$= (b - a)^2 \mathbf{E} \left[\left\| \nabla_i f(X_1, \dots, X_n) \right\|^2 \right].$$

c. Since f is L-Lipschitz, we know that $||f(x)|| \leq L$ for all $x \in [a, b]^n$. Thus, from part b.,

$$\operatorname{Var}[f(X_1,\ldots,X_n)] \le L^2(b-a)^2.$$

2.2 Markov semigroups

Problem 2.6 (Some elementary identities). Let P_t be a Markov semigroup with generator \mathcal{L} and stationary measure μ . Prove the following elementary facts:

- a) Show that $\mu(\mathcal{L}f) = 0$ for every $f \in \text{Dom}(\mathcal{L})$.
- b) If $\phi \colon \mathbb{R} \to \mathbb{R}$ is convex, then $P_t \phi(f) \ge \phi(P_t f)$ when $f, \phi(f) \in L^2(\mu)$.
- c) If $\phi \colon \mathbb{R} \to \mathbb{R}$ is convex, then $\mathcal{L}\phi(f) \ge \phi'(f)\mathcal{L}f$ when $f, \phi(f) \in \text{Dom}(\mathcal{L})$.
- d) Let $f \in \text{Dom}(\mathcal{L})$. Show that the following process is a martingale:

$$M_t^f := f(X_t) - \int_0^t \mathcal{L}f(X_s) \mathrm{d}s.$$

Solution. a) Recall that the generator is defined as a limit in $L^2(\mu)$, i.e. we have

$$\lim_{t \to 0} \left\| \frac{1}{t} (P_t f - f) - \mathcal{L} f \right\|_{L^2(\mu)} \to 0.$$

In particular, this implies

$$\lim_{t \to 0} \int \frac{1}{t} \left(P_t f - f \right) \mathrm{d}\mu = \int \mathcal{L} f \mathrm{d}\mu.$$

Since stationarity implies for all t

$$\frac{1}{t} \int (P_t f - f) \, \mathrm{d}\mu = \frac{1}{t} \mathbb{E} \left[\mathbb{E} \left[f(X_t) \mid X_0 \right] - f(X_0) \right] = 0$$

we can conclude

$$\int \mathcal{L}f d\mu = \lim_{t \to 0} \int \frac{1}{t} \left(P_t f - f \right) d\mu = 0.$$

b) This is just the conditional version of Jensen's inequality, i.e. for any x

$$P_t \phi(f(x)) = \mathbb{E}\left[\phi(f(X_t)) \mid X_0 = x\right] \ge \phi\left(\mathbb{E}\left[f(X_t) \mid X_0 = x\right]\right) = \phi(P_t f(x)).$$

c) By convexity we have for any y, z that $\phi(y) - \phi(z) \ge \phi'(z)(y-z)$. Using Jensen's inequality from above and with $y = P_t f(x)$ and z = f(x), we get

$$\frac{P_t(\phi(f_x)) - \phi(f(x))}{t} \ge \frac{\phi(P_t f(x)) - \phi(f(x))}{t}$$
$$\ge \frac{\phi'(f(x)) \left(P_t f(x) - f(x)\right)}{t}$$

Taking the limit $t \to 0$ yields the required result.

d) We have

$$M_t^f := f(X_t) - \int_0^t \mathcal{L}f(X_s) \mathrm{d}s.$$

Let $\{\mathcal{F}_t\}_{t\geq 0}$ denote the natural filtration with respect to $X = (X_t)$ and $\tau \leq t$, then

$$\mathbb{E}\left[M_t^f \mid \mathcal{F}_\tau\right] = \mathbb{E}\left[f(X_t) \mid \mathcal{F}_\tau\right] - \mathbb{E}\left[\int_0^t \mathcal{L}f(X_s) \mathrm{d}s \mid \mathcal{F}_\tau\right]$$
$$= \mathbb{E}\left[f(X_t) \mid X_\tau\right] - \mathbb{E}\left[\int_\tau^t \mathcal{L}f(X_s) \mathrm{d}s \mid X_\tau\right] - \mathbb{E}\left[\int_0^\tau \mathcal{L}f(X_s) \mathrm{d}s \mid \mathcal{F}_\tau\right]$$
$$= P_{t-\tau}f(X_\tau) - \mathbb{E}\left[\int_0^\tau \mathcal{L}f(X_s) \mathrm{d}s \mid X_\tau\right] - \int_0^\tau \mathcal{L}f(X_s) \mathrm{d}s$$
$$= P_{t-\tau}f(X_\tau) - P_{t-\tau}f(X_\tau) + f(X_\tau) - \int_0^\tau \mathcal{L}f(X_s) \mathrm{d}s$$
$$= f(X_\tau) - \int_0^\tau \mathcal{L}f(X_s) \mathrm{d}s = M_\tau^f,$$

where we used that $\int_0^{\tau} \mathcal{L}f(X_s) ds$ is \mathcal{F}_{τ} measurable in the second line and the Markov property in the third.